The MANDELBRÖT & JULIA GALLERY, page 1

The description lists the type of set, (Mandelbröt or Julia), the function used to generate the set and the scan area parameters,
(the coordinates of the lower-left corner, followed by the length of the side). The constant is added for Julia sets.
Most values are shown in exponential notation.
Click the thumb-nail graphic for an enlarged version.

 Mandelbröt z = z² + c (-1.40E-1, 8.90E-1), 4.95E-5 Mandelbröt z = z² + c (-7.22E-1, 3.03E-1), 6.51E-3 Julia z = z(z² - 1) + c (-1.52, -1.45), 3.23 (-0.6171, 0.4553i) Julia z = z(z² - 1) + c (-2.94E-1, 2.52E-1), 1.53E-3 (-0.6171, 0.4553i) Mandelbröt z = z² - z - 1 + c (9.19E-1, 1.69E-2), 1.69E-1 Mandelbröt z = z² - z - 1 + c (9.49E-1, 1.33E-1), 3.42E-2 Julia z = z²(z - 1) + c (-1.20, -1.50), 3.00 (0.9541, 0.5385i) Julia z = z²(z - 1) + c (-5.29E-1, -6.70E-2), 2.17E-1 (0.9541, 0.5385i) Mandelbröt z = z⁴ + c (--1.40, -1.30), 2.60 Mandelbröt z = z⁴ + c (-6.85E-1, 3.53E-1), 1.23E-3 Julia z = z⁴ + c (-1.50, -1.50), 3.00 (-0.6841, 0.3534i) Julia z = z⁴ + c (-8.76E-1, 1.32E-1), 1.20E-1 (-0.6841, 0.3534i)