The MANDELBRÖT & JULIA GALLERY, page 1 

The description lists the type of set, (Mandelbröt or Julia), the function used to generate the set and the scan area parameters, (the coordinates of the lower-left corner, followed by the length of the side). The constant is added for Julia sets.
Most values are shown in exponential notation.
Click the thumb-nail graphic for an enlarged version.

Mandelbröt 1 Mandelbröt
z = z² + c
(-1.40E-1, 8.90E-1),
4.95E-5
Mandelbröt 2 Mandelbröt
z = z² + c
(-7.22E-1, 3.03E-1),
6.51E-3
Julia 1 Julia
z = z(z² - 1) + c
(-1.52, -1.45),
3.23
(-0.6171, 0.4553i)
Julia 2 Julia
z = z(z² - 1) + c
(-2.94E-1, 2.52E-1),
1.53E-3
(-0.6171, 0.4553i)
Mandelbröt 3 Mandelbröt
z = z² - z - 1 + c
(9.19E-1, 1.69E-2),
1.69E-1
Mandelbröt 4 Mandelbröt
z = z² - z - 1 + c
(9.49E-1, 1.33E-1),
3.42E-2
Julia 3 Julia
z = z²(z - 1) + c
(-1.20, -1.50),
3.00
(0.9541, 0.5385i)
Julia 4 Julia
z = z²(z - 1) + c
(-5.29E-1, -6.70E-2),
2.17E-1
(0.9541, 0.5385i)
Mandelbröt 5 Mandelbröt
z = z⁴ + c
(--1.40, -1.30),
2.60
Mandelbröt 6 Mandelbröt
z = z⁴ + c
(-6.85E-1, 3.53E-1),
1.23E-3
Julia 5 Julia
z = z⁴ + c
(-1.50, -1.50),
3.00
(-0.6841, 0.3534i)
Julia 6 Julia
z = z⁴ + c
(-8.76E-1, 1.32E-1),
1.20E-1
(-0.6841, 0.3534i)