The MANDELBRÖT & JULIA GALLERY, page 2

The description lists the type of set, (Mandelbröt or Julia), the function used to generate the set and the scan area parameters,
(the coordinates of the lower-left corner, followed by the length of the side). The constant is added for Julia sets.
Most values are shown in exponential notation.
Click the thumb-nail graphic for an enlarged version.

 Mandelbröt z = z(z + i) + c (-2.5, -2.5), 4.00 Mandelbröt z = z(z + i) + c (-3.47E-2, -1.90), 1.42E-1 Mandelbröt z = z(z + i) + c (7.32-2, -1.20), 1.00E-2 Mandelbröt z = z(z + i) + c (8.13E-2, -1.02), 4.49E-4 Julia z = z(z + i) + c (-2.00, --2.50), 4.00 (0.0816, -1.0176i) Julia z = z(z + i) + c (8.66E-1, 2.12E-1),1.05E-1 (0.0816, -1.0176i) Julia z = z(z + i) + c (9.62E-1, 2.45E-1), 2.91E-3 (0.0816, -1.0176i) Julia z = z(z + i) + c 9.64E-1, 2.48E-1), 8.51E-5 (0.0816, -1.0176i) Mandelbröt z = z²(z + i) + c (-1.80, -2.20), 3.60 Mandelbröt z = z²(z + i) + c (-1.85E0-1, -1.041),7.77E-2 Mandelbröt z = z²(z + i) + c (-1.43E-1, -9.98E-1), 2.51E-3 Mandelbröt z = z²(z + i) + c -1.41E-1, -9.99E-1), 1.16E-4 Julia z = z²(z + i) + c (-1.50, -1.80), 3.00 (-0.1413, -0.9976i) Julia z = z²(z + i) + c (7.70E-1, -1.51E-1),1.02E-1 (-0.1413, -0.9976i) Julia z = z²(z + i) + c (8.48E-1, 1.88E-1), 4.54E-3 (-0.1413, -0.9976i) Julia z = z²(z + i) + c 8.49E-1, 1.90E-1), 3.43E-4 (-0.1413, -0.9976i)